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Lipolysis is an important pathway in maintaining en-

ergy homeostasis through the degradation of triglyc-
erides in adipose tissue and the release of fatty acids

into the circulation as an energy source. However, an
elevated level of circulating fatty acids leads to unfa-

vorable metabolic effects such as insulin resistance
and dyslipidemia. Cell surface receptors and intracel-

lular components of the lipolytic pathway have been
targeted to develop antilipolytic agents, among which

are G-protein-coupled receptor agonists and lipase in-
hibitors. In addition, molecules that stimulate lipolysis

have been tested in clinical trials as a treatment for
obesity. Together, these molecules represent a diverse

group of regulators for this pathway. This review will
discuss strategies to target lipolysis and the major

issues with representative small-molecule modulators
of this pathway.

Introduction
Energy homeostasis is balanced by food intake and en-
ergy expenditure. When energy intake exceeds utiliza-
tion, the adipose tissue serves as a reservoir for energy
storage in the form of triacylglycerol (TG). Under fasting
conditions or during periods of increased energy de-
mand, the degradation of TG occurs in adipose tissue
to release free fatty acids (FFAs) into the circulation as
an energy source for other tissues. FFAs are mobilized
from adipose tissue as a result of the balance between
lipolysis and re-esterification. This dynamic process is
essential for systemic lipid metabolism and energy ho-
meostasis (Figure 1). Disturbances in fatty acid metabo-
lism have been linked to insulin resistance and other fea-
tures of the metabolic syndrome. Elevated plasma FFA
levels have been observed in both mild and severe
type 2 diabetics [1], and individuals with higher plasma
fasting FFAs have an increased risk of type 2 diabetes
[2, 3]. Since FFAs are immediate precursors of hepatic
TG synthesis [4], elevated plasma FFA levels are one
of the primary causes of hyperlipidemia. Increased
plasma FFAs also augment basal hepatic gluconeogen-
esis [5, 6], inhibit insulin-dependent glucose disposal
[7–9], and impair microvascular function [10]. In addi-
tion, chronic FFA exposure inhibits glucose-dependent
insulin secretion by isolated human pancreatic islets
[11]. One of the direct molecular defects caused by ele-
vated plasma FFAs is the accumulation of intracellular
lipids, which impairs insulin signaling, resulting in he-
patic and peripheral insulin resistance [12].
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FFAs are mobilized from adipose tissue via lipolysis.
Two lipolytic enzymes, hormone-sensitive lipase (HSL)
[13] and adipose triglyceride lipase (ATGL), also known
as desnutrin or calcium-independent phospholipase
A2z (iPLA2z) [14–17], play central roles in the degrada-
tion of TG. In addition, HSL also hydrolyzes diacylgly-
cerol (DG) [15]. The activities of HSL and ATGL are highly
regulated. The activation of HSL is mediated by phos-
phorylation and translocation [13], and the expression
of ATGL is stimulated by fasting and suppressed upon
refeeding [15, 16]. These molecular mechanisms medi-
ate the hormonal regulation of lipolysis to accommodate
the need for energy demand or storage [18], so that the
lipolytic rate is synchronized with the metabolic status.
Dysregulation of lipolysis could lead to elevated plasma
FFAs and cause insulin resistance. Increased lipolysis
has been observed in both lean type 2 diabetics and
obese subjects [19, 20]. The lipolysis in these subjects
is less responsive to suppression by insulin [19, 20]. In
addition to the deleterious effects of elevated plasma
FFAs, increased lipolysis supplies extra glycerol to aug-
ment gluconeogenesis [21]. Therefore, inhibition of lipol-
ysis may be a viable approach to reduce plasma FFAs
and improve insulin sensitivity in patients with type 2
diabetes. This concept is supported by the clinical use
of niacin and its analogs (i.e., acipimox), which exert
their pharmacologic effects primarily by inhibiting lipol-
ysis [22]. Acipimox improves hepatic and peripheral
insulin sensitivity by reducing plasma FFAs without in-
creasing adipokine secretion [23], suggesting that re-
ducing plasma FFAs alone is sufficient to treat insulin
resistance. Niacin reduces pro-atherogenic lipoproteins
and elevates high-density lipoprotein (HDL) in humans
[22]. Niacin and its analogs also improve insulin action
in short-term treatments [23–26]. However, the clinical
use of niacin is limited due to side effects, mainly skin
flushing mediated by prostaglandin release [22, 27, 28].
A sustained-release form of niacin is effective in amelio-
rating flushing, but is associated with hepatic toxicity
[29]. Niacin also induces significant insulin resistance
after long-term use and, at high doses, causes deteriora-
tion of glycemic control [30, 31]. Based on these clinical
findings, there is a clear medical need for improved
antilipolytic treatments.

The Lipolysis Pathway

The FFA release in the cell involves the hydrolysis of TG
and subsequent degradations of DG and monoacylgly-
cerol (MG) (Figure 2). ATGL and HSL are the main lipo-
lytic enzymes for the initial steps, and monoglyceride
lipase (MGL) converts MG to FFA and glycerol in the final
step (Figure 2). Carboxylesterase 3 and two calcium-
independent phospholipase A2 (iPLA2) members also
have TG lipase activity [17, 32], but their contribution
to the fat cell lipolysis remains to be determined. ATGL
is the predominant TG lipase expressed in white adi-
pose tissue [15–17]. ATGL is localized on the surface
of the lipid droplet. The expression of ATGL is upregu-
lated by fasting and glucocorticoids [15, 16], suggesting
that ATGL might be involved in the activation of lipolysis.
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Figure 1. FFA Metabolism

The TG contents carried by chylomicron and

VLDL particles are hydrolyzed by lipoprotein

lipase (LPL) located on the endothelium and

adipocytes releasing FFAs, which enter the

fat cell via facilitated uptake for fat storage.

A fraction of the released FFAs enter the

blood circulation. The plasma FFAs are im-

portant for hepatic lipid synthesis and gluco-

neogenesis. FFAs are also oxidized as an

energy source in multiple tissues. The accu-

mulation of TG in both liver and skeletal

muscle results in the increased fatty acyl

metabolites that cause insulin resistance

[70]. For simplicity, some components in

the FFA metabolism pathway are omitted,

and only liver and skeletal muscle are shown

here as the major FFA utilizing organs.
Human genetic studies suggest that ATGL is associated
with plasma FFA concentrations and risk of type 2 dia-
betes [33], highlighting the important role of lipolysis in
lipid metabolism and insulin sensitivity. HSL is mainly
a DG lipase with significant TG lipase activity [34–36].
The hormonal activation of lipolysis is mediated by the
intracellular levels of cAMP and cGMP, which activate
protein kinase A (PKA) and protein kinase G (PKG), re-
spectively (Figure 2). These kinases phosphorylate
HSL promoting the translocation of HSL from the cyto-
sol to the lipid droplet where TG hydrolysis occurs.
This process is also facilitated by the phosphorylation
of perilipin A, a structural protein on the surface of the
lipid droplet (Figure 2). Upon phosphorylation, perilipin
A dissociates from the lipid droplet and allows HSL ac-
cess to the core lipids [13, 37]. While perilipin knockout
in mice resulted in leanness [38], reduced perilipin levels
are associated with increased lipolysis in human obesity
[39, 40]. The intracellular FFAs produced by lipolysis are
bound to adipocyte fatty-acid-binding protein (FABP),
which helps solubilize and transport FFAs out of the
cell. FABP is physically associated with HSL and relieves
product inhibition by binding to FFAs released from HSL
[41, 42]. Consistent with this role, FABP deficiency de-
creases lipolysis and increases fat mass [43, 44].
Molecular and Physiological Regulation of Lipolysis
Lipolysis is regulated by hormones such as catechol-
amines and insulin. Catecholamines interact with both
Gi-G-protein-coupled a2-adrenergic receptor (a2-AR)
and Gs-G-protein-coupled b-adrenergic receptors (b1-,
b2-, and b3-ARs), and regulate intracellular cAMP levels
in opposite directions [45] (Figure 2). Normally the lipo-
lytic effect of b-ARs dominates, and the net effect of cat-
echolamine action is stimulation of lipolysis. But the
balance could shift under certain physiological condi-
tions, which may be associated with alterations of the
available catecholamine concentrations [45]. Insulin
suppresses lipolysis through the phosphorylation and
activation of phosphodiesterase 3B (PDE3B), which hy-
drolyzes both cAMP and cGMP [46, 47]. PDE3B is the
main PDE involved in the lipolysis in human adipocytes
[48]. There are a number of other molecules that exert
antilipolytic effects through the activation of Gi-G-pro-
tein-coupled receptors (Figure 2). The niacin receptor
HM74a is coupled to Gi [49] and is activated by the ke-
tone body (D)-b-hydroxybutyrate (see Table 1), an en-
dogenous ligand generated by b-oxidation of fatty acids
[50]. Upon fasting, (D)-b-hydroxybutyrate can reach
a plasma concentration close to the EC50 value for
HM74a [50]. Therefore, it plays a key role in mediating
Figure 2. The Lipolysis Pathway in Adipose

Tissue
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a negative feedback mechanism to suppress lipolysis.
Lipolysis is also regulated by other extracellular factors,
such as growth hormone [45], glucocorticoids [51], adi-
pokines [52], and cytokines [53, 54]. Some of the under-
lying mechanisms are not well understood. Natriuretic
peptides exert their lipolytic effect via a non-GPCR re-
ceptor that, upon activation, increases the intracellular
cGMP level [55] (Figure 2).

Under normal conditions, both the basal and cate-
cholamine-stimulated lipolysis rates per cell are posi-
tively correlated with fat cell size [56], which is at least
partly attributed to a shift in the balance between b-
ARs and a2-AR [56]. In obesity, the average fat cell vol-
ume is increased and the lipolytic rate per cell is ele-
vated [19, 20, 57, 58]. However, when normalized by
cell volume or tissue weight, the adipose tissue lipolysis
rate remains unchanged in obese subjects compared
with normal lean controls [19, 20, 57, 58]. With the higher
fat mass in obese subjects, the net result is significantly

Table 1. Structures of Representative HM74a or HM74b Agonists

Compound Structure Reference

Niacin

(HM74a selective)

[71, 72, 73]

Acipimox

(HM74a selective)

[71, 72, 73]

Acifran (nonselective) [72]

(D) b-hydroxybutyrate

(HM74a selective)

[50]

1–3 (HM74a active;

no HM74b data)

[78]

4 (HM74a selective) [80]

5 (HM74b selective) [81]
increased lipolytic activity in the body, resulting in the
elevated glycerol levels in both plasma and adipose
tissue [58]. The lipolysis in obese subjects also exhibits
reduced capacity for catecholamine induction or insulin
suppression [19, 20, 57]. Impaired catecholamine-
induced lipolysis has been observed in obese children
and adults [59, 60], which could be attributed to the re-
duced expression of HSL and b2-AR and increased a2-
AR expression in adipose tissue [57, 61, 62]. In addition
to fat cell size, fat distribution and regional differences
in lipolysis are important in delineating obesity and insu-
lin resistance. Upper body obesity has a greater basal
lipolytic rate and reduced catecholamine response com-
pared with lower body obesity [63]. Indeed, the lower
body fat has a lower blood flow or lipolysis rate [64]
and is associated with favorable glucose and lipid levels
[65]. The omental adipose tissue releases more FFAs
than subcutaneous fat [66], which promotes FFA deliv-
ery through the portal vein to liver and augments hepatic
glucose output. This ‘‘portal hypothesis’’ is supported by
molecular alterations in the visceral adipose tissue of
fat-fed dogs [67]. If this is the main link between central
obesity and increased hepatic glucose output, suppres-
sion of lipolysis by insulin could play an important role in
its inhibitory effect on hepatic gluconeogenesis [68].

The Development of Small-Molecule Modulators

for Lipolysis
Since FFAs and glycerol released by lipolysis augment
hepatic gluconeogenesis, inhibition of lipolysis could
suppress endogenous glucose production. This can
be achieved without changing plasma insulin [69].
Based on the findings with niacin and its analogs, it is
evident that antilipolytic drugs improve plasma lipopro-
tein profiles. One of the primary molecular defects in
type 2 diabetes and subjects with insulin resistance is
the accumulation of intracellular lipid [70]. The subse-
quent elevation of lipid-derived fatty acid metabolites
activates a serine/threonine kinase cascade that ulti-
mately leads to the attenuation of insulin signaling [70].
If elevated plasma FFA level is the primary cause of in-
tracellular lipid accumulation [70], antilipolytic agents
are expected to restore insulin signaling. Thus, antilipo-
lytic drugs could improve hepatic and peripheral insulin
sensitivity.
Niacin Receptor Agonists

The high-affinity niacin receptor HM74a is a Gi-G-pro-
tein-coupled receptor (Gi-GPCR), which upon activation
leads to a reduced intracellular cAMP level and subse-
quent inhibition of HSL [49, 71–74] (Figure 2). HM74a is
predominantly expressed in adipose, lung, and spleen
[71–73]. A low-affinity receptor HM74b is also coupled
to Gi with a similar expression profile, but it is not re-
sponsible for the pharmacologic effects of niacin [72,
74]. The role of HM74a in the flushing side effect of niacin
is not clear, but its involvement is possible because of its
expression in immune cells [75–77].

Despite the unclear role of HM74a in the flushing side
effect, small-molecule HM74a agonists have been under
investigation (Table 1). One hypothesis is that HM74a
causes flushing when activated in skin. Since there is
a very low level of HM74a in skin relative to that in adi-
pose tissue, partial agonists are not expected to activate
HM74a in skin but to be fully functional in adipose [78].
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Figure 3. Mechanisms of Catalysis and Pseudosubstrate Inhibition for HSL

(A) Catalysis with TG and DG as substrates. HSL is primarily a DG lipase with significant TG lipase activity. Both reactions are illustrated in the

schema.

(B) Proposed mechanism for enzyme inhibition by pseudosubstrates. The pseudosubstrate inhibitor undergoes a nucleophilic attack by the

invariant serine at the active site of HSL, forming breakdown product 1 and the acylated enzyme. The subsequent displacement by a water

molecule of the fatty acyl chain in the acylated enzyme intermediate results in the release of breakdown product 2 and the reactivated enzyme.
Using this strategy, van Herk and coworkers synthe-
sized a series of pyrazole-3-carboxylic acids based on
several known compounds with potent hypolipidemic
activities (Table 1, 1–3) [78, 79]. The maximum activation
threshold by these compounds is less than the full
activation potential of HM74a, suggesting that they are
partial agonists [78]. If partial agonists could render tis-
sue selectivity, the skin flushing could be eliminated with
this approach. But experimental data supporting this
notion are not available. In contrast to the strategy em-
ployed by van Herk and coworkers, Pinto and col-
leagues took an empirical approach to select xanthine
HM74a agonists with low potential for flushing (Table
1, 4) [80]. To monitor prostaglandin release, they mea-
sured the ear temperature of anaesthetized guinea
pigs post dosing [80]. The mean increase in ear temper-
ature over time was used to assess a compound’s po-
tential to stimulate prostaglandin release. At an identical
dose, a xanthine analog induced a much lower temper-
ature increase than niacin [80]. Assuming that this com-
pound is at least as efficacious as niacin at the same
dose, this model might be useful in selecting com-
pounds with a low potential of causing skin flushing.
Recently, it was suggested that the flushing side effect
could be mediated by HM74a, and therefore, HM74b
agonism may be a good strategy to achieve antilipolytic
effect without causing flushing (Table 1, 5) [81].
HSL Inhibitors

HSL deficiency in mice improved the lipoprotein profile
and inhibited obesity [82, 83], suggesting that HSL-se-
lective inhibitors may be a viable antilipolytic strategy.
Due to conserved structural features [84], lipases gener-
ally have low substrate specificity. Their hydrolytic
potential even extends to phospholipids and organic
compounds with an ester bond [85]. However, HSL is an
exception in that it is not closely related to other mam-
malian lipases by sequence comparison, although it
contains certain lipase-like segments [86, 87]. Structural
modeling based on a bacterial HSL homology revealed
its unique structure, suitable for inhibitor selectivity [88].

Catalysis by HSL involves the nucleophilic attack of a
serine to the ester carbonyl in the substrate, forming
a covalent intermediate with the enzyme. The fatty acyl
chain is then displaced by a water molecule to release
the FFA (Figure 3A). Many of the reported HSL inhibitors
work through this mechanism by acting as pseudosub-
strates (Figure 3B). This type of pseudosubstrate inhibi-
tion is also widely observed among esterase and prote-
ase inhibitors with varying reactivation half-lives [89, 90].
A structure-activity relationship (SAR) may exist for the
reactivation half-life, as this has been observed with
acetylcholine esterase (AChE) inhibitors [91]. Other
HSL inhibitors may also act as pseudosubstrates in
a similar mechanism [92–94] (Figure 4). Due to the pseu-
dosubstrate nature, the IC50 values of these inhibitors
are time dependent. It is important to have ex vivo as-
says to fully assess a compound’s potency.

Although reduced plasma FFAs and glucose have
been demonstrated in diabetic rats treated with a selec-
tive HSL inhibitor [95], the propensity for nonspecific
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covalent binding is a concern. In addition, the inactiva-
tion and reactivation of the enzyme are accompanied
with the breakdown of the inhibitor, resulting in the for-
mation of a leaving group and a hydrolyzed fragment, re-
spectively (Figure 3B). Safety assessment of both break-
down products is important. A second potential concern
about HSL inhibition is the possible accumulation of
intracellular DG, which has been implicated in the acti-
vation of a serine/threonine kinase cascade leading to
attenuated insulin signaling.
b-Adrenergic Receptors
In contrast to the antilipolytic approach with HM74a ag-
onists and HSL inhibitors, increasing brown adipose tis-
sue (BAT) thermogenesis with b3-AR agonists has been
under investigation for the treatment of obesity. This ap-
proach is counterintuitive because b3-AR agonists stim-
ulate lipolysis, which results in increased FFA release
causing insulin resistance and/or dyslipidemia. How-
ever, rodent models of obesity and diabetes treated
with selective b3-AR agonists led to marked weight
loss and antidiabetic effects [96]. This could be attrib-
uted to increased FFA oxidation in thermogenically
more active BAT, resulting in reduced obesity and
plasma FFAs [96]. But adult humans have very little
BAT [97], making this approach questionable. In addi-
tion, the antilipolytic a2-AR level relative to b3-AR is
higher in humans than rodents [98] and further elevated

Figure 4. Representative HSL Inhibitors

Compounds 1 [90], 2 [92, 93], and 3 [94, 95] are all potential pseu-

dosubstrate inhibitors. The leaving group (L.G.) for each compound

is in blue (also see Figure 3B).
in obese subjects [99], making activating lipolysis via
b3-AR agonism more difficult. In light of these uncer-
tainties, the observed animal efficacy with b3-AR ago-
nists may not be clinically relevant. However, genetic
and polymorphic evidence from human studies suggest
a role of b3-AR in insulin resistance and obesity [100–
103], lending some support to the existing b3-AR agonist
efforts [104, 105]. One potential underlying mechanism
for these observations is that b3-AR agonists activate
AMP-activated protein kinase (AMPK) [106, 107]. Exam-
ples of b3-AR agonists that have advanced to clinical tri-
als include Rafabegron (AJ-9677) [108] and L-796568
[109, 110] (Figure 5A). In a single-dose study, L-796568
increased energy expenditure, plasma glycerol, and
FFAs in obese subjects [109]. In a 28 day study, L-
796568 significantly reduced body weight and plasma
triglyceride, but no significant increase in energy expen-
diture or improvement in glucose tolerance was ob-
served [110]. The treated group exhibited an increase
in plasma FFAs after the initial dose, but by day 9 the
effect diminished, suggesting possible receptor desen-
sitization [110]. Despite signs of efficacy in these clinical
studies, inconsistent findings and receptor desensitiza-
tion are major concerns with this approach.
A1 Receptor Agonists

In addition to HM74a agonists and HSL inhibitors, A1
adenosine receptor agonists are antilipolytic by de-
creasing the intracellular cAMP level (Figure 2). How-
ever, sustained activation of A1 adenosine receptor
leads to receptor desensitization [111]. Recent findings
indicate that the maximal functional effect mediated by
A1 adenosine receptor can be achieved by less than
1% receptor occupancy by a ligand, whereas far greater
receptor occupancy is required to cause receptor de-
sensitization [112]. It would appear that careful dose
titration may cause minimal or no receptor desensitiza-
tion while maintaining antilipolytic effects [112]. A sec-
ond concern about A1 adenosine receptor is its expres-
sion in cardiac tissue [113], where its activation could
Figure 5. Examples of b3-AR Agonists and A1 Adenosine Receptor Agonists

(A) Examples of b3-AR agonists that have been tested in clinical studies, Rafabegron [108] and L-796568 [109, 110].

(B) Examples of A1 adenosine receptor agonists, CVT-2759 [112], CVT-510 [114], and ARA [115].
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slow the heart rate. However, since the heart receptor
level is >10-fold less than that in the adipocytes [113],
a partial agonist at the appropriate dose may not change
the heart rate, but still be fully active in adipose with anti-
lipolytic effects. This was demonstrated in a study with
A1 partial agonist CVT-2759 [112]. Separate studies
with CVT-510 and ARA, respectively, suggest the poten-
tial cardiac side effect can also be resolved by careful
dose titration [114, 115]. This concept is consistent
with the results in a clinical study with CVT-510 [116].
Representative A1 agonists are shown in Figure 5B.

New Targets for Small-Molecule Modulators

of Lipolysis
With the mixed clinical results of b3-AR agonists, more
drug discovery efforts are expected to focus on antilipo-
lytic therapeutics. Since the newly identified ATGL is
involved in the first step of TG hydrolysis (Figure 2), se-
lective inhibitors targeting this step are likely promising
drugs with no risk of DG accumulation. However, ATGL
knockout mice have accumulated lipids in the heart,
raising safety concerns about this approach [117]. In
addition to niacin receptor HM74a and A1 adenosine
receptor, other GPCRs might be targeted. EP3 prosta-
glandin receptor (EP3-PG-R) and neuropeptide-Y1 re-
ceptor [118, 119] downregulate the intracellular cAMP
level (Figure 2) and therefore could be potential targets
for antilipolytic agents. Moreover, atrial natriuretic pep-
tide (ANP) has a potent lipolytic effect in abdominal
subcutaneous adipose tissue of healthy subjects [120].
This effect is mediated by natriuretic peptide receptor
A (NPR-A) (Figure 2), which upon activation upregulates
intracellular cGMP level [55]. The serum ANP level is
correlated with the venous glycerol concentration in
humans [121], suggesting that it may play a role in
lipolysis. Since NPR-A is expressed in human adipose
tissue, ANP antagonists are potential antilipolytic com-
pounds for the treatment of insulin resistance and
dyslipidemia [122]. Natriuretic receptors may only be
expressed in primate adipose tissues but not in rodent
adipose tissues. Therefore, the efficacy of ANP antago-
nists can not be assessed in rodent systems.

Key Issues and Future Directions

The concept of using stimulators of lipolysis for the
treatment of obesity has been tested in clinical trials
with b3-AR agonists. Since the rationale is largely based
on findings in rodent models, and given the large differ-
ences in b3-AR agonism between human and rodents,
the potential of these molecules as drugs is debatable
and remains to be further validated in clinic. The antilipo-
lytic effects of niacin and other niacin analogs are bene-
ficial, but the side effects need to be minimized or elim-
inated. The next generation of molecules must meet
higher safety standards, since they will be used to treat
chronic conditions such as insulin resistance and obe-
sity. Therefore, targets that are expressed specifically
in adipose tissue are preferred, and compounds that
act on these targets have to be selective. Since the lipo-
lytic pathway is highly regulated via signaling, receptor
desensitization is an issue that needs to be considered
when selecting targets and lead compounds. With the
accumulating knowledge of the lipolytic pathway, espe-
cially the clinical experience with a number of com-
pounds, continued efforts in this area will likely lead to
new chemical entities for the treatment of insulin resis-
tance, dyslipidemia, and obesity.
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